HER2 overexpression renders human breast cancers sensitive to PARP inhibition independently of any defect in homologous recombination DNA repair.

نویسندگان

  • Somaira Nowsheen
  • Tiffiny Cooper
  • James A Bonner
  • Albert F LoBuglio
  • Eddy S Yang
چکیده

HER2 overexpression in breast cancer confers increased tumor aggressiveness. Although anti-HER2 therapies have improved patient outcome, resistance ultimately occurs. PARP inhibitors target homologous recombination (HR)-deficient tumors, such as the BRCA-associated breast and ovarian cancers. In this study, we show that HER2+ breast cancers are susceptible to PARP inhibition independent of an HR deficiency. HER2 overexpression in HER2 negative breast cancer cells was sufficient to render cells susceptible to the PARP inhibitors ABT-888 and AZD-2281 both in vitro and in vivo, which was abrogated by HER2 reduction. In addition, ABT-888 significantly inhibited NF-κB (p65/RelA) transcriptional activity in HER2+ but not HER2 negative breast cancer cells. This corresponded with a reduction in phosphorylated p65 and total IKKα levels, with a concomitant increase in IκBα. Overexpression of p65 abrogated cellular sensitivity to ABT-888, whereas IκBα overexpression reduced cell viability to a similar extent as ABT-888. Therefore, susceptibility of HER2+ breast cancer cells to PARP inhibition may be because of inhibition of NF-κB signaling driven by HER2. Our findings indicate that PARP inhibitors may be a novel therapeutic strategy for sporadic HER2+ breast cancer patients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AXL Inhibition Suppresses the DNA Damage Response and Sensitizes Cells to PARP Inhibition in Multiple Cancers.

Epithelial to mesenchymal transition (EMT) is associated with a wide range of changes in cancer cells, including stemness, chemo- and radio-resistance, and metastasis. The mechanistic role of upstream mediators of EMT has not yet been well characterized. Recently, we showed that non-small cell lung cancers (NSCLC) that have undergone EMT overexpress AXL, a receptor tyrosine kinase. AXL is also ...

متن کامل

Cyclin A2 regulates homologous recombination DNA repair and sensitivity to DNA damaging agents and poly(ADP-ribose) polymerase (PARP) inhibitors in human breast cancer cells

Defects in homologous recombination (HR) repair are found in breast cancers. Intriguingly, breast cancers with defective HR show increased sensitivity to DNA crosslinking agents and poly(ADP-ribose) polymerase (PARP) inhibitors. As such, genes that can affect HR functions have been of high interest in studies aiming to develop biomarkers for predicting response to treatment with these agents. C...

متن کامل

Poly(ADP-ribose) polymerase (PARP-1) and p53 independently function in regulating double-strand break repair in primate cells.

PARP-1 is rapidly activated by DNA strand breaks, which finally leads to the modulation of multiple protein activities in DNA replication, DNA repair and checkpoint control. PARP-1 may be involved in homologous recombination, and poly(ADP-ribosyl)ation of p53 represents one possible mechanism that activates p53 as a recombination surveillance factor. Here, we examined the influence of PARP-1 on...

متن کامل

Novel treatment strategies in triple-negative breast cancer: specific role of poly(adenosine diphosphate-ribose) polymerase inhibition

Inhibitors of the poly(adenosine triphosphate-ribose) polymerase (PARP)-1 enzyme induce synthetic lethality in cancers with ineffective DNA (DNA) repair or homologous repair deficiency, and have shown promising clinical activity in cancers deficient in DNA repair due to germ-line mutation in BRCA1 and BRCA2. The majority of breast cancers arising in carriers of BRCA1 germ-line mutations, as wel...

متن کامل

BRCA1, PARP, and 53BP1: conditional synthetic lethality and synthetic viability.

BRCA1 plays a critical role in the regulation of homologous recombination (HR)-mediated DNA double-strand break repair. BRCA1-deficient cancers have evolved to tolerate loss of BRCA1 function. This renders them vulnerable to agents, such as PARP inhibitors, that are conditionally 'synthetic lethal' with their underlying repair defect. Recent studies demonstrate that BRCA1-deficient cells may ac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 72 18  شماره 

صفحات  -

تاریخ انتشار 2012